প্রথম পত্রের অংকের সমাধান

৭। পদার্থের গাঠনিক ধর্ম

(Structural Properties of Matter)

মো: শাহ জামাল সহকারী অধ্যাপক (পদার্থবিজ্ঞান বিভাগ) বি এ এফ শাহীন কলেজ তেজগাঁও, ঢাকা

ফোল: +8801670856105, +88029125630, 88029115369

E-Mail: sjamal59@gmail.com

৭। পদার্থের গাঠনিক ধর্ম

১। 1 বর্গ মিলিমিটার প্রস্থাচ্ছেদের ক্ষেত্রকল বিশিষ্ট একটি ইস্পাতের তারের দৈর্ঘ্য শতকরা 2 ভাগ বৃদ্ধি করতে কত বল প্রয়োগ করতে হবে? ইস্পাতের ইয়ং এর গুনান্ধ $2 \times 10^{11} \ \text{Nm}^{-2}$ । এখানে,

$$Y = \frac{FL}{Al}$$

$$\Rightarrow F = \frac{YA \, l}{L}$$

$$\Rightarrow$$
 $F = \frac{2 \times 10^{11} \times 1 \times 10^{-6} \times 2x}{x \times 100}$ বিল $F = ?$

m² | এখানে, প্রস্থাকের ক্ষেত্রফল,
$$A = 1 \text{ mm}^2$$
 =1×10⁻⁶ m² আদি দৈর্ঘ্য, $L = x$ (ধরি)
∴ দৈর্ঘ্য বৃদ্ধি, $I = \frac{x \times 2}{100}$
ইয়ং এর গুনাক, $Y = 2 \times 10^{11} \text{ Nm}^{-2}$
বল $F = ?$

$$\therefore F = 4000 \text{ N (Ans.)}$$

 $2 + 1 \times 10^{-10} \text{ m}^2$ প্রস্থাচ্ছেদের ক্ষেত্রফলবিশিষ্ট একটি ইম্পাতের তারে কত বল প্রয়োগ করলে এর দৈর্ঘ্য দ্বিগুন হবে $[Y=2 \times 10^{11} \text{ Nm}^{-2}]$ আমরা জানি,

$$Y = \frac{FL}{Al}$$

$$\Rightarrow F = \frac{YA l}{L}$$

$$\Rightarrow F = \frac{2 \times 10^{11} \times 1 \times 10^{-10} \times x}{x}$$

$$\Rightarrow F = 20 \text{ N (Ans.)}$$

অখানে,
প্রাস্থাক্তের ক্ষেত্রফল, $A = 1 \times 10^{-10} \, \mathrm{m}^2$ আদি দৈর্ঘ্য, L = x (ধরি)
∴দৈর্ঘ্য বৃদ্ধি, I = (2x - x) = xইয়ং এর গুনাঙ্ক, $Y = 2 \times 10^{11} \, \mathrm{Nm}^{-2}$ বল, F = ?

৩। 6~m দীর্ঘ এবং $1mm^2$ প্রস্থচেছদের ক্ষেত্রফল বিশিষ্ট একটি তারের প্রান্তে 20kg এর একটি ভর ঝুলিয়ে দেওয়া হল। তারের উপাদাদের ইয়ং এর গুনাম্ভ $2.35{\times}10^{11}~Nm^{-2}$ হলে তারটি কতটুকু বৃদ্ধি পাবে?

$$Y = \frac{FL}{Al}$$

$$\Rightarrow l = \frac{FL}{YA}$$

$$\Rightarrow l = \frac{20 \times 9.8 \times 6}{2.35 \times 10^{11} \times 1 \times 10^{-6}}$$

$$\therefore l = 5 \times 10^{-3} \text{ m (Ans.)}$$

এখানে, আদি দৈর্ঘ্য, $L=6~\mathrm{m}$ প্রস্থুচেন্থনের ক্ষেত্রফল, $A=1\mathrm{mm}^2=1\times10^{-6}~\mathrm{m}$ ইয়ং এর গুনারু, $Y=2.35\times10^{11}~\mathrm{Nm}^2$ বল, $F=20\mathrm{kg-Wt}$ $=20\times9.8~\mathrm{N}$ দৈর্ঘ্য বৃদ্ধি, I=?

8। একটি তারের ইয়ং এর গুনান্ধ 2.35×10¹¹ Nm⁻² এবং তারটির ব্যাস 2mm। তারটির দৈর্ঘ্য 0.25% বৃদ্ধি করতে হলে কত বল প্রয়োগ করতে হবে? আমরা জানি, ামে

$$Y = \frac{FL}{Al}$$

$$\Rightarrow F = \frac{YA l}{L}$$

$$\Rightarrow F = \frac{2.35 \times 10^{11} \times 3.14 \times 10^{-6} \times 0.25x}{x \times 100}$$

$$\therefore F = 1844 .75 \text{ N (Ans.)}$$

ব্যাস, d = 2mm
∴ব্যাসার্থ, r=1mm=0.001m
∴গ্রহাফেনের ক্ষেত্রফল
A=πr²
= 3.14×(0.001)²m²
= 3.14×10⁻⁶ m²
আদি দৈর্ঘ্য, L=x (ধরি)

∴দৈর্ঘ্য বৃদ্ধি, $I = \frac{x \times 0.25}{100} m$ Y = 2.35×10¹¹ Nm⁻²

e। একটি তারের ইয়ং এর মানাস্ক $2\times 10^{11}\,{
m Nm}^{-2}$ তারটির দৈর্ঘ্য 15% বৃদ্ধি করতে প্রযুক্ত পীড়ন নির্ণয় কর। $Y = \frac{FL}{Al}$ ধরি আদি দৈর্ঘ্য, L=x দৈর্ঘ্যবৃদ্ধি, $1=\frac{x\times 15}{100}$

$$Y = \frac{1}{Al}$$

$$\Rightarrow \frac{F}{A} = \frac{Yl}{L}$$

$$\Rightarrow \frac{F}{A} = \frac{2 \times 10^{11} \times x \times 15}{x \times 100}$$

$$\therefore \frac{F}{A} = 3 \times 10^{10} \text{ Nm}^{-2} \text{ (Ans)}$$

$$\Rightarrow \frac{F}{A} = \frac{1}{2} \times 10^{10} \text{ Nm}^{-2} \text{ (Ans)}$$

৬। 200cm লম্বা এবং $1mm^2$ প্রস্থাচ্ছেদের ক্ষেত্রফল বিশিষ্ট একটি ইস্পাতের তারের দৈর্ঘ্য 1×10^{-3} m বৃদ্ধি করতে প্রয়োজনীয় কাজের পরিমান 0.05J। তারের উপাদানের ইয়ংএর গুনাঙ্ক নির্ণয় কর। আমরা জানি,

৭ তিm দীর্ঘ এবং 2mm² প্রস্থাছেদের ক্ষেত্রফল বিশিষ্ট একটি তারে 10kg এর একটি ভর ঝুলান আছে। যখন ভরটি সরিয়ে নেওয়া হয় তখন তারের দৈর্ঘ্য হয় 5.9975 m। তারের উপাদানের ইয়ংএর গুনায় নির্ণয় কর।

জামরা জানি,
$$Y = \frac{FL}{Al}$$
 জাদি দৈর্ঘ্য, $L = 5.9975$ m দৈর্ঘ্য বৃদ্ধি,
$$P = \frac{MgL}{Al}$$

$$\Rightarrow Y = \frac{MgL}{Al}$$

$$\Rightarrow Y = \frac{10 \times 9.8 \times 5.9975}{2 \times 10^{-6} \times 0.0025}$$

$$\therefore Y = 1.18 \times 10^{11} \text{ Nm}^{-2} \text{ (Ans.)}$$
 এখানে, আদি দৈর্ঘ্য, $L = 5.9975$ m দৈর্ঘ্য বৃদ্ধি,
$$l = (6 - 5.9975)\text{m}$$

$$= 0.0025\text{m}$$
 প্রস্থান্থেদের ক্ষেত্রফল,
$$A = 2\text{mm}^2 = 2 \times 10^{-6} \text{ m}^2$$
 ভর $M = 10 \text{ kg}$ হিন্দ্রং এর গুলাঙ্ক, $Y = ?$

৮। 1m দীর্ঘ কোন তারের ব্যাস $5\times10^{-3}m$ তারের দৈর্ঘ্য বরাবর একটি বল প্রয়োগে এর দৈর্ঘ্য $1\times10^{-2}m$ বৃদ্ধি পায়। পয়সনের অনুপাত 0.2 হলে তারের ব্যাস -এর ফ্রাস নির্ণয় কর। আমরা জানি,

$$\sigma = rac{dL}{Dl}$$
 all $d imes 1$ and $d imes 2$ and $d imes 3$ and $d imes 3$ and $d imes 3$ and $d imes 4$ and $d imes 3$ and $d imes 4$ and $d i$

Md. Shah Jamal Asst. Professor of Physics, BAF Shaheen College Dhaka, Phone No. 9125630, 9115369, 01670 856105, sjamal 59@gmail.com

http://edubd24.com

৯। 200cm লম্বা এবং 1mm² প্রস্থচ্ছেদের ক্ষেত্রফল বিশিষ্ট একটি ইস্পাতের তারের দৈর্ঘ্য 1×10⁻³ m বৃদ্ধি করতে প্রয়োজনীয় কাজের পরিমান নির্ণয় কর। তারের উপাদানের ইয়ংএর গুনাক্ষ[Y=2×10 Nm²] আমরা জানি,

$$W = \frac{1}{2} \frac{YAI^2}{L}$$
 আদি দৈখ্য, $L = 200 cm = 2m$ প্রস্থাছেদের ক্ষেত্রকল, $A = 1 mm^2 = 1 \times 10^{-6} \, m^2$ দৈখ্য বৃদ্ধি, $I = 1 \times 10^{-6} \, m^2$ দেখ্য বৃদ্ধি, $I = 1 \times 10^{-3} m$ $\therefore Y = 2 \times 10^{11} \, \text{Nm}^{-2}$ কাজ, $W = ?$

১০। একটি তারের ওজন নগন্য ধরে একে 25°C তাপমাত্রার পানির উপরিতল থেকে 0.05m লম্বা একটি অনুভূমিক তারকে সর্বাধিক 7.30×10⁻³ N বলে টেনে উঠান যায়। পানির পৃষ্টটান নির্ণয় কর। আমরা জানি,

বল, F = 7.30×10 - 3N

নলের ব্যাস, d = 0.2 mm

 $= 0.1 \times 10^{-3} \text{ m}$

পানির উচ্চতা, h = ?

এখানে

পানির পৃষ্ঠটান, T=72×10 ⁻³ Nm ⁻¹

ब्रामार्थ, r =200 mm=0.2m

সান্দ্ৰতাংক, η=0.003 kg m⁻¹s⁻¹

বেগ, v=2×10⁻²ms⁻¹

পানির ঘনত ρ=10 ³ kgm⁻³

∴নলের ব্যাসার্ধ,

r = 0.1 mm

$$T = \frac{1}{2L}$$

$$\Rightarrow T = \frac{7.30 \times 10^{-3}}{2 \times 0.05}$$

ভারের দৈর্ঘ্য, L=0.05m পানির পৃষ্ঠটান, T=?

 $T = 0.073 \text{ Nm}^{-1} \text{ (Ans.)}$

১১। 0.2mm ব্যাসের একটি নলে পানির আরোহন নির্ণয় কর। পানির পৃষ্ঠটান =72 ×10⁻³ Nm ⁻¹ও পানির ঘনত 10³ kgm ⁻³।

আমরা জানি.

$$T = \frac{rh\rho g}{2}$$

$$\forall f, h = \frac{2T}{r\rho g}$$

বা, $h = \frac{2 \times 72 \times 10^{-3}}{0.1 \times 10^{-3} \times 10^{3} \times 9.8}$

∴ h = 0.1469 m (Ans.)

১২। 200mm ব্যাসার্ধের একটি ধাতব গোলক একটি তরলের মধ্যদিয়ে 2.1×10⁻²ms⁻¹ প্রান্ত বেগে পডছে। তরলের সান্ত্রতাংক 0.003 kg

m¹s¹। তরলের সান্দ্র বল নির্ণয় কর। আমরা জানি,

 $F = 6\pi r \eta v$

 \Rightarrow F = 6×3.14×0.2×0.003× 2.1×10⁻²N

 $F = 2.37 \times 10^4 \text{ N}$ (Ans.)

১৩। 2mm ব্যাসের একটি পানির গোলককৈ ভেঙে দশ লক্ষ সম্বায়তন স্থুদ্র ফোঁটা তৈরী করলে কি পরিমান কাজ সম্পন্ন হবে। [পানির পৃষ্ঠটান $=72 \times 10^{-3} \text{ Nm}^{-1}$ আমরা জানি.

কাজ W= ক্ষেত্রফলের পরিবর্তন × পৃষ্ঠটান

 \Rightarrow কাজ $W = \Delta A \times T$

$$\Rightarrow W = 4\pi (Nr^2 - R^2)T$$
এখন,

$$10^6 \times \frac{4}{3} \pi r^3 = \frac{4}{3} \pi R^3$$

$$\Rightarrow (10^2 r)^3 = R^3$$

$$\Rightarrow r = \frac{R}{100}$$

বড় ফোটার ব্যাস D = 2mm বড ফোটার ব্যাসার্ধ, R= 1mm $= 1 \times 10^{-3} \text{m}$ ছোট ফোটার ব্যাসার্ধ, r =? পানির পষ্টটান, T=72×10 -3 Nm -1 সম্পাদিত কাজ, W=? ফোটার সংখ্যা, N-106

 $\Rightarrow r = \frac{10^{-3}}{100} \text{ m} = 10^{-5} \text{ m}$

 $\therefore W = 4 \times 3.14 \{10^6 \times (10^{-5})^2 - (10^{-3})^2\} \times 72 \times 10^{-3} J$

 $W = 8.95 \times 10^{-5} \text{ J(Ans.)}$

 $58 \cdot 0.8 imes 10^{-3} \; \mathrm{m}$ ব্যাসার্ধের একটি কৈশিক কাচনল পারদে ভুবালে নলের মধ্যে পারদের অবনমন 6.753× 10⁻³ m হয়। কাচের সাথে পারদের স্পর্শ কোণ কত? পারদের পৃষ্ঠটান $4.7 \times 10^{-1}~{
m Nm}^{-1}$ এবং ঘনত $13.6 \times 10^{3}~{
m kg}$ $10^{-3}~{
m kg}$ $10^{-3}~{
m kg}$

m-3 আমরা জানি. $T = \frac{h\rho gr}{2\cos\theta}$

পারদের অবনমন, $h = -6.753 \times 10^{-3} \text{ m}$ পারদের পৃষ্ঠটান, $T = 4.7 \times 10^{-1} \text{ Nm}^{-1}$ পারদের ঘনত, $\rho = 13.6 \times 10^3 \text{ kgm}^{-3}$ পারদের স্পর্শ কোণ, $\theta = \infty$?

 $\Rightarrow 4.7 \times 10^{-1} = \frac{-6.753 \times 10^{3} \times 13.6 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{-1}} = \frac{-6.753 \times 10^{3} \times 13.6 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{-1}} = \frac{-6.753 \times 10^{3} \times 13.6 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{-1}} = \frac{-6.753 \times 10^{3} \times 13.6 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{-1}} = \frac{-6.753 \times 10^{3} \times 13.6 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{3}} = \frac{-6.753 \times 10^{3} \times 13.6 \times 10^{3}}{4.7 \times 10^{3}} = \frac{-6.753 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{3}} = \frac{-6.753 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{3}} = \frac{-6.753 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{3}} = \frac{-6.753 \times 10^{3} \times 9.8 \times 0.8 \times 10^{3}}{4.7 \times 10^{3}} = \frac{-6.753 \times 10^{3}}{4.7$

 $\Rightarrow \cos\theta = \frac{-6.753 \times 10^{-3} \times 13.6 \times 10^{3} \times 9.8 \times 0.8 \times 10^{-3}}{2 \times 4.7 \times 10^{-1}}$

 $\Rightarrow \cos\theta = -0.765991353$

 $\Rightarrow \theta = \cos^{-1}(-0.765991353)$

 $\theta = 140^{\circ} \text{ (Ans.)}$

১৫। 2×10^4 m ব্যাসার্ধের একটি লোহার বল তার্পিন তেলের ভিতর দিয়ে $4 imes 10^{-2} \, \mathrm{ms}^{-1}$ প্রান্ত বেগে পড়ছে। যদি লোহা ও তার্পিন তেলের ঘনত

যথাক্রমে 7.8×103 kgm⁻³ এবং 0.87×103 kgm⁻³ হয়, তবে তার্পিন তেলের সান্দ্রতাংক নির্ণয় কর। আমরা জানি,

 $2r^2(\rho_s - \rho_f)g$

এখানে, ব্যাসার্ধ r = 2× 10⁻⁴ m প্রান্ত বেগ, v = 4× 10⁻² ms⁻¹ লোহার ঘনত , $\rho_s = 7.8 \times 10^3 \text{ kgm}^{-3}$ তেলের ঘনত , $\rho_f = 0.87 \times 10^3 \text{ kgm}^{-3}$ সান্দ্ৰতাংক η=?

$$\eta = \frac{2r^{2}(\rho_{s} - \rho_{f})g}{9v}$$

$$\Rightarrow \eta = \frac{2(2 \times 10^{-4})^2 (7.8 \times 10^3 - 0.87 \times 10^3) \times 9.8}{9 \times 4 \times 10^{-2}}$$

 $\therefore \eta = 0.0151 \text{ kg m}^{-1} \text{s}^{-1} \text{ (Ans.)}$

১৬। একটি নলের ব্যাসার্থ 0.1mm । একে 60 ×10⁻³ Nm ⁻¹ পৃষ্ঠটান এবং 800 kgm ⁻³ ঘনতের একটি তেলে ডুবালে কৈশিক নলে কত উচ্চতায় তেল উঠবে। স্পর্শ কোণ 20°।

 $T = \frac{\text{rhpg}}{2\cos\theta}$

 $\Rightarrow h = \frac{T2\cos\theta}{r\rho g}$

 $\Rightarrow h = \frac{60 \times 10^{-3} \times 2 \times \cos 20^{0}}{100 \times 10^{-3} \times 2 \times \cos 20^{0}}$ 0.1×10 -3 ×800×9.8

 $\Rightarrow h = \frac{60 \times 10^{-3} \times 2 \times 0.93969262}{0.1 \times 10^{-3} \times 800 \times 9.8}$

h = 0.1438 m (Ans.)

অখনে,
নলের ব্যাসার্থ,
$$r=0.1 mm$$

 $=0.1\times 10^{-3} m$
পৃষ্ঠটান, $T=60\times 10^{-3} Nm^{-1}$
ঘনত $\rho=800 kgm^{-3}$
স্পর্শ কোণ, $\theta=20^{\circ}$ ।
পানির উচ্চতা, $h=?$

Md. Shah Jamal Asst. Professor of Physics, BAF Shaheen College Dhaka, Phone No. 9125630, 9115369, 01670 856105, sjamal 59@gmail.com